Fine-grained parameterized complexity analysis of graph coloring problems

نویسندگان

چکیده

The $q$-Coloring problem asks whether the vertices of a graph can be properly colored with $q$ colors. Lokshtanov et al. [SODA 2011] showed that on graphs feedback vertex set size $k$ cannot solved in time $\mathcal{O}^*((q-\varepsilon)^k)$, for any $\varepsilon > 0$, unless Strong Exponential-Time Hypothesis (SETH) fails. In this paper we perform fine-grained analysis complexity respect to hierarchy parameters. We show even when parameterized by cover number, must appear base exponent: Unless ETH fails, there is no universal constant $\theta$ such $\mathcal{O}^*(\theta^k)$ all fixed $q$. apply method due Jansen and Kratsch [Inform. & Comput. 2013] prove are $\mathcal{O}^*((q - \varepsilon)^k)$ algorithms where deletion distance several classes $\mathcal{F}$ which known solvable polynomial time. generalize earlier ad-hoc results showing if class whose $(q+1)$-colorable members have bounded treedepth, then exists some 0$ $\mathcal{O}^*((q-\varepsilon)^k)$ given modulator $\mathcal{F}$. contrast, paths simplest unbounded treedepth algorithm exist SETH

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems

The q-Coloring problem asks whether the vertices of a graph can be properly colored with q colors. Lokshtanov et al. [SODA 2011] showed that q-Coloring on graphs with a feedback vertex set of size k cannot be solved in time O∗((q− ε)), for any ε > 0, unless the Strong Exponential-Time Hypothesis (SETH) fails. In this paper we perform a fine-grained analysis of the complexity of q-Coloring with ...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Fine-Grained Complexity of Coloring Unit Disks and Balls

On planar graphs, many classic algorithmic problems enjoy a certain “square root phenomenon” and can be solved significantly faster than what is known to be possible on general graphs: for example, Independent Set, 3-Coloring, Hamiltonian Cycle, Dominating Set can be solved in time 2O( √ n) on an n-vertex planar graph, while no 2o(n) algorithms exist for general graphs, assuming the Exponential...

متن کامل

On the Fine-Grained Complexity of Rainbow Coloring

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k ≥ 2, there is no algorithm for Rainbow k-Coloring running in time 2 3/2), unless ETH fails. Motivated by this negative result we consider two paramet...

متن کامل

Fine-Grained Analysis of Problems on Curves

We provide conditional lower bounds on two problems on polygonal curves. First, we generalize a recent result on the (discrete) Fréchet distance to k curves. Specifically, we show that, assuming the Strong Exponential Time Hypothesis, the Fréchet distance between k polygonal curves in the plane with n edges cannot be computed in O(nk−ε) time, for any ε > 0. Our second construction shows that un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2023

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2022.11.011